薬物動態のうち消失半減期1/2とグラフの読み方のまとめ

Sponsored Link

薬物動態、消失半減期t1/2とグラフの読み方

今までは、ADMEをみてきました。今回から薬物動態をみていきます。薬物動態は時間経過とともに血中濃度がどのように推移していくかなどを見ていきます。

 

 

計算などをしていくうえで、1-コンパートメントモデルというモデルを用います。前回までのADMEのように通常であれば時間をかけて、血中濃度が変化していきますが、1-コンパートメントモデルでは、薬を投与した瞬間に瞬間的に全身に移行すると考えるモデルです。

 

1-コンパートメントモデルでは、以下のような薬物動態パラメーターなどを使っていきます。

 

  • 消失半減期;t1/2
  • 分布容積;Vd
  • 全身クリアランス;CLtot
  • バイオアベイラビリティ;F

 

今回は消失半減期を見ていきます。

 

Sponsored Link

Sponsored Link


 

消失半減期;t1/2

薬を注射で単回投与したときに、C0という血中濃度に達した後、以下のようなグラフを描き、また数式化できます。

 

 

ここで高校の数学を思い出してください。この数式の自然対数と常用対数をとると以下のようなグラフと数式に変形できます。

 

 

薬を投与した直後の血中濃度をC0とすると、それが半分となるC0/2までの時間を消失半減期と言います。先ほどの自然対数の式のt=t1/2、C=C0/2を代入すると、t1/2=ln2/kelが得られます。

 

このkelを消失速度定数と呼び、大きいほど薬が早く消失していくことになります。片対数グラフの傾きはkelとなります。

 

まだ消失半減期のみしか学んでいないので少し早いですが、国家試験風の問題を見てみましょう。

 

例題

ある薬を100mg静脈内投与したところ、下記の片対数グラフがえられた。この薬のkelはいくらか

 

 

まず縦軸の濃度から見ます。C0が10μg/mlであり、半分の濃度である5μg/mlまで減少する時間を横軸から見ると、3hであることがわかります。つまりt1/2は3hであることがわかります。

 

t1/2=ln2/kelであるため、kel=0.693/3=0.231であることがわかります。

 

 

全身クリアランス(CLtot)を学んだ時にもう一度この問題を見て欲しいのですが、もう一歩進んで全身クリアランスまで求めてみます。

 

Div=C0・Vdであるため、Vd=100/10=10Lと求めることができます。

 

最後に、kel=CLtot/Vdであるため、Cltot=0.231・10=2.31と求めることができます。

 

とりあえず、今回は片対数グラフからkelが求められれば大丈夫です。

 

まとめ

  • 薬物動態を考える際に、消失半減期、分布容積、全身クリアランス、バイオアベイラビリティなどのパラメーターを使う。
  • 消失半減期t1/2は血中濃度が半分になるまでの時間。
  • 片対数グラフの傾きがkelとなる。

Sponsored Link

薬物動態、消失半減期t1/2とグラフの読み方 関連ページ

ADMEと肝初回通過効果の概要
薬を経口投与した後は、吸収、分布、代謝、排泄といったADMEと呼ばれる流れを受けます。薬を経口投与する際には、肝初回通過効果を受け、一部の薬が代謝されます。
薬の吸収は非撹拌水層、溶解速度、胃内容排出速度などの影響を受ける。
経口投与された薬は小腸から吸収され、肝初回通過効果を受けます。吸収された薬に影響を与える要因として、非撹拌水層、溶解速度、胃内容排出速度などがあります。
薬の分布、毛細血管壁と血漿タンパク質
薬の分布では非結合形薬物が組織に移行できます。逆に結合形薬物は血漿タンパク質に薬がくっついています。血漿タンパク質の代表例にアルブミンやα1-酸性糖タンパク質などがあります。
薬の分布、結合定数とLangmuir(ラングミュア)式
薬の結合定数を測定する方法には、平衡透析法、限外ろ過法などがあります。平衡透析法では計算問題、Langmuir(ラングミュア)式ではグラフがどうシフトするのかが問われます。
薬の分布、血液脳関門と分布容積
脳への薬の分布に血液脳関門関わり、脂溶性が高く、分子量が小さいものが血液脳関門を透過しやすいです。分布容積は分布のしやすさを表す指標です。
薬の代謝、CYPの阻害と誘導
分布した薬は代謝を受けて排泄の準備が行われます。代謝に関わるものにシトクロムP450というものがあり、酸化反応に関わります。CYPは薬によって阻害や誘導を受けます。
薬の排泄は糸球体ろ過、尿細管分泌、尿細管再吸収より行われる。
薬は胆汁中排泄などもありますが、基本的には糸球体ろ過、尿細管分泌、尿細管再吸収により排泄されます。クレアチニンの腎クリアランスは腎機能の指標となります。
生体膜透過、単純拡散はめんつゆをイメージしよう。
生体膜透過には、単純拡散などの種類があります。単純拡散はFickの法則により、透過速度は濃度勾配に比例して、膜の厚さに反比例します。またpH分配仮説により分子形が生体膜を透過しやすいです。
特殊輸送、能動輸送はP-糖タンパク質とMichaelis-Menten(ミカエリスメンテン)式をおさえよう。
特殊輸送は能動輸送、促進拡散、膜動輸送などがあります。能動輸送においては、P-糖タンパク質とMichaelis-Menten(ミカエリスメンテン)式をおさえることが重要です。
薬物動態、分布容積Vdとグラフの描き方
分布容積Vdは、組織への移行のしやすさを表す指標です。薬物動態では分布容積はDiv=C0・Vdと計算式をあらわすことができます。この式を使って、グラフの描き方を見てみます。
薬物動態、全身クリアランスCLtotとAUC
薬物動態のうち、CLtot(全身クリアランス)は、単位時間あたりの薬を除去した血液の容積をさします。また、AUC(血中薬物濃度時間曲線下面積)は濃度の合計をさし、CLtot(全身クリアランス)との関係式があります。
薬物動態、腎クリアランスCLrの計算式
全身クリアランスは腎クリアランスを用いて、CLtot=CLr+CLhとあらわすことができます。また腎クリアランスはCLr・Cp=U・VやCLr=(GFR・fp+分泌クリアランス)(1-R)とあらわすことができます。
薬物動態、腎排泄と尿中排泄率Ae
薬物動態の尿中排泄率Aeを使うことで、肝代謝か腎排泄かを判断する手掛かりとなります。尿中排泄率Aeを用いて、クリアランスを表すとCLr=CLtot・Aeが成り立ちます。
薬物動態、肝クリアランスCLhと肝抽出率Eh
薬物動態のうち、肝臓を1回通過した時の薬物濃度の減少率を肝抽出率Ehと言います。また肝クリアランスCLhを用いて、肝抽出率を表すと、CLh=Eh・Qhとなります。
薬物動態、量的バイオアベイラビリティと絶対的バイオアベイラビリティ
薬物動態のうち経口投与した後、どれくらい利用されるかの割合をバイオアベイラビリティと言います。計算式では、絶対的バイオアベイラビリティ(F)=(AUCpo/Dpo)/(AUCiv/Div)が成り立ちます。
薬物動態、点滴静注と定常状態
点滴静注を続けると4〜5半減期くらいで定常状態に達します。早く定常状態にもっていくために、点滴静注と負荷量(loading dose)を併用することがあります。
薬物動態、モーメント解析法とMRT
薬物動態のうち、モデルに基づかない解析法にモーメント解析法があります。モーメント解析法ではAUCやAUMCが使われますが、投与された薬が体に存在する時間MRTなども使います。

 
HOME プロフィール お問い合わせ